Intro to Recursion
A simple example from stackoverflow with OOD:
class Calculation { int fact(int n) { int result; if(n==1) return 1; result = fact(n-1) * n; return result; } } public class Factorial { public static void main(String args[]) { Calculation obj_one = new Calculation(); int a = obj_one.fact(4); System.out.println("The factorial of the number is : " + a); } }
Assignments:
1. Use the same visual representation as the one above for 4!
2. Modify the method that calculates the sum of the integers between 1 and N shown in this chapter. Have the new version match the following recursive definition: The sum of 1 to N is the sum of 1 to (N/2) plus the sum of (N/2 + 1) to N. Trace your solution using an N of 7.
3. Design and implement a program that implements Euclid’s algorithm for finding the greatest common divisor of two positive integers. The greatest common divisor is the largest integer that divides both values without producing a remainder. An iterative version of this method was part of the RationalNumber class presented in Chapter 4.
//******************************************************************** // Rational.java Author: Lewis/Loftus/Cocking // // Represents one rational number with a numerator and denominator. //******************************************************************** public class Rational { private int numerator, denominator; //----------------------------------------------------------------- // Sets up the rational number by ensuring a nonzero denominator // and making only the numerator signed. //----------------------------------------------------------------- public Rational (int numer, int denom) { if (denom == 0) denom = 1; // Make the numerator "store" the sign if (denom < 0) { numer = numer * -1; denom = denom * -1; } numerator = numer; denominator = denom; reduce(); } //----------------------------------------------------------------- // Returns the numerator of this rational number. //----------------------------------------------------------------- public int getNumerator () { return numerator; } //----------------------------------------------------------------- // Returns the denominator of this rational number. //----------------------------------------------------------------- public int getDenominator () { return denominator; } //----------------------------------------------------------------- // Returns the reciprocal of this rational number. //----------------------------------------------------------------- public Rational reciprocal () { return new Rational (denominator, numerator); } //----------------------------------------------------------------- // Adds this rational number to the one passed as a parameter. // A common denominator is found by multiplying the individual // denominators. //----------------------------------------------------------------- public Rational add (Rational op2) { int commonDenominator = denominator * op2.getDenominator(); int numerator1 = numerator * op2.getDenominator(); int numerator2 = op2.getNumerator() * denominator; int sum = numerator1 + numerator2; return new Rational (sum, commonDenominator); } //----------------------------------------------------------------- // Subtracts the rational number passed as a parameter from this // rational number. //----------------------------------------------------------------- public Rational subtract (Rational op2) { int commonDenominator = denominator * op2.getDenominator(); int numerator1 = numerator * op2.getDenominator(); int numerator2 = op2.getNumerator() * denominator; int difference = numerator1 - numerator2; return new Rational (difference, commonDenominator); } //----------------------------------------------------------------- // Multiplies this rational number by the one passed as a // parameter. //----------------------------------------------------------------- public Rational multiply (Rational op2) { int numer = numerator * op2.getNumerator(); int denom = denominator * op2.getDenominator(); return new Rational (numer, denom); } //----------------------------------------------------------------- // Divides this rational number by the one passed as a parameter // by multiplying by the reciprocal of the second rational. //----------------------------------------------------------------- public Rational divide (Rational op2) { return multiply (op2.reciprocal()); } //----------------------------------------------------------------- // Determines if this rational number is equal to the one passed // as a parameter. Assumes they are both reduced. //----------------------------------------------------------------- public boolean equals (Rational op2) { return ( numerator == op2.getNumerator() && denominator == op2.getDenominator() ); } //----------------------------------------------------------------- // Returns this rational number as a string. //----------------------------------------------------------------- public String toString () { String result; if (numerator == 0) result = "0"; else if (denominator == 1) result = numerator + ""; else result = numerator + "/" + denominator; return result; } //----------------------------------------------------------------- // Reduces this rational number by dividing both the numerator // and the denominator by their greatest common divisor. //----------------------------------------------------------------- private void reduce () { if (numerator != 0) { int common = gcd (Math.abs(numerator), denominator); numerator = numerator / common; denominator = denominator / common; } } //----------------------------------------------------------------- // Computes and returns the greatest common divisor of the two // positive parameters. Uses Euclid's algorithm. //----------------------------------------------------------------- private int gcd (int num1, int num2) { while (num1 != num2) if (num1 > num2) num1 = num1 - num2; else num2 = num2 - num1; return num1; } }
In a class called DivisorCalc, define a static method called gcd that accepts two integers, num1 and num2. Create a driver to test your implementation. The recursive algorithm is defined as follows:
gcd (num1, num2) is num2 if num2 <= num1 and num2 divides num1
gcd (num1, num2) is gcd (num2, num1) if num1 < num2
gcd (num1, num2) is gcd (num2, num1%num2) otherwise
4. Design and implement a recursive program, Pascal_YI.java to determine and print the Nth line of Pascal’s Triangle, as shown below. Each interior value is the sum of the two values above it. Hint: use an array to store the values on each line.